Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.037
1.
Medicine (Baltimore) ; 103(18): e38086, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701247

BACKGROUND: Dementia is a major public health challenge for aging societies worldwide. Neuroinflammation is thought to be a key factor in dementia development. The aim of this study was to comprehensively assess translocator protein (TSPO) expression by positron emission tomography (PET) imaging to reveal the characteristics of neuroinflammation in dementia. METHODS: We used a meta-analysis to retrieve literature on TSPO expression in dementia using PET imaging technology, including but not limited to the quality of the study design, sample size, and the type of TSPO ligand used in the study. For the included studies, we extracted key data, including TSPO expression levels, clinical characteristics of the study participants, and specific information on brain regions. Meta-analysis was performed using R software to assess the relationship between TSPO expression and dementia. RESULTS: After screening, 12 studies that met the criteria were included. The results of the meta-analysis showed that the expression level of TSPO was significantly elevated in patients with dementia, especially in the hippocampal region. The OR in the hippocampus was 1.50 with a 95% CI of 1.09 to 1.25, indicating a significant increase in the expression of TSPO in this region compared to controls. Elevated levels of inflammation in the prefrontal lobe and cingulate gyrus are associated with cognitive impairment in patients. This was despite an OR of 1.00 in the anterior cingulate gyrus, indicating that TSPO expression in this region did not correlate significantly with the findings. The overall heterogeneity test showed I² = 51%, indicating moderate heterogeneity. CONCLUSION: This study summarizes the existing literature on TSPO expression in specific regions of the brain in patients with dementia, and also provides some preliminary evidence on the possible association between neuroinflammation and dementia. However, the heterogeneity of results and limitations of the study suggest that we need to interpret these findings with caution. Future studies need to adopt a more rigorous and consistent methodological design to more accurately assess the role of neuroinflammation in dementia, thereby providing a more reliable evidence base for understanding pathological mechanisms and developing potential therapeutic strategies.


Dementia , Neuroinflammatory Diseases , Positron-Emission Tomography , Receptors, GABA , Humans , Positron-Emission Tomography/methods , Dementia/diagnostic imaging , Dementia/metabolism , Receptors, GABA/metabolism , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/metabolism , Brain/diagnostic imaging , Brain/metabolism
2.
Alzheimers Dement ; 20(5): 3606-3628, 2024 May.
Article En | MEDLINE | ID: mdl-38556838

INTRODUCTION: Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS: A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS: While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION: In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS: MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.


Alzheimer Disease , Brain , Protein Isoforms , tau Proteins , Humans , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Brain/metabolism , Brain/pathology , Tauopathies/genetics , Tauopathies/metabolism , Alternative Splicing , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Animals , Dementia/genetics , Dementia/metabolism
3.
Basic Clin Pharmacol Toxicol ; 134(5): 563-573, 2024 May.
Article En | MEDLINE | ID: mdl-38459754

Dementia is an umbrella term for a broad group of age-associated neurodegenerative diseases. It is estimated that dementia affects 50 million people worldwide and that Alzheimer's disease (AD) is responsible for up to 75% of cases. Small extracellular senile plaques composed of filamentous aggregates of amyloid ß (Aß) protein tend to bind to neuronal receptors, affecting cholinergic, serotonergic, dopaminergic and noradrenergic neurotransmission, leading to neuroinflammation, among other pathophysiologic processes and subsequent neuronal death, followed by dementia. The amyloid cascade hypothesis points to a pathological process in the cleavage of the amyloid precursor protein (APP), resulting in pathological Aß. There is a close relationship between the pathologies that lead to dementia and depression. It is estimated that depression is prevalent in up to 90% of individuals diagnosed with Parkinson's disease, with varying severity, and in 20 to 30% of cases of Alzheimer's disease. The hypothalamic pituitary adrenal (HPA) axis is the great intermediary between the pathophysiological mechanisms in neurodegenerative diseases and depression. This review discusses the role of Aß protein in the pathophysiological mechanisms of dementia and depression, considering the HPA axis, neuroinflammation, oxidative stress, signalling pathways and neurotransmission.


Alzheimer Disease , Amyloid beta-Peptides , Dementia , Neurodegenerative Diseases , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Depression , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/pathology , Neuroinflammatory Diseases , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/pathology , Dementia/metabolism
4.
Exp Neurol ; 374: 114680, 2024 Apr.
Article En | MEDLINE | ID: mdl-38185314

Cerebrovascular diseases are a major cause of stroke and dementia, both requiring long-term care. These diseases involve multiple pathophysiologies, with mitochondrial dysfunction being a crucial contributor to the initiation of inflammation, apoptosis, and oxidative stress, resulting in injuries to neurovascular units that include neuronal cell death, endothelial cell death, glial activation, and blood-brain barrier disruption. To maintain brain homeostasis against these pathogenic conditions, brain immune cells, including border-associated macrophages and microglia, play significant roles as brain innate immunity cells in the pathophysiology of cerebrovascular injury. Although microglia have long been recognized as significant contributors to neuroinflammation, attention has recently shifted to border-associated macrophages, such as perivascular macrophages (PVMs), which have been studied based on their crucial roles in the brain. These cells are strategically positioned around the walls of brain vessels, where they mainly perform critical functions, such as perivascular drainage, cerebrovascular flexibility, phagocytic activity, antigen presentation, activation of inflammatory responses, and preservation of blood-brain barrier integrity. Although PVMs act as scavenger and surveillant cells under normal conditions, these cells exert harmful effects under pathological conditions. PVMs detect mitochondrial dysfunction in injured cells and implement pathological changes to regulate brain homeostasis. Therefore, PVMs are promising as they play a significant role in mitochondrial dysfunction and, in turn, disrupt the homeostatic condition. Herein, we summarize the significant roles of PVMs in cerebrovascular diseases, especially ischemic and hemorrhagic stroke and dementia, mainly in correlation with inflammation. A better understanding of the biology and pathobiology of PVMs may lead to new insights on and therapeutic strategies for cerebrovascular diseases.


Cerebrovascular Disorders , Dementia , Mitochondrial Diseases , Humans , Macrophages/metabolism , Brain/metabolism , Inflammation/metabolism , Dementia/metabolism
5.
Open Biol ; 13(12): 230253, 2023 Dec.
Article En | MEDLINE | ID: mdl-38052249

The mechanisms underlying neurodegenerative sequelae of traumatic brain injury (TBI) are poorly understood. The normal plasma protein, serum amyloid P component (SAP), which is normally rigorously excluded from the brain, is directly neurocytotoxic for cerebral neurones and also binds to Aß amyloid fibrils and neurofibrillary tangles, promoting formation and persistence of Aß fibrils. Increased brain exposure to SAP is common to many risk factors for dementia, including TBI, and dementia at death in the elderly is significantly associated with neocortical SAP content. Here, in 18 of 30 severe TBI cases, we report immunohistochemical staining for SAP in contused brain tissue with blood-brain barrier disruption. The SAP was localized to neurofilaments in a subset of neurones and their processes, particularly damaged axons and cell bodies, and was present regardless of the time after injury. No SAP was detected on astrocytes, microglia, cerebral capillaries or serotoninergic neurones and was absent from undamaged brain. C-reactive protein, the control plasma protein most closely similar to SAP, was only detected within capillary lumina. The appearance of neurocytotoxic SAP in the brain after TBI, and its persistent, selective deposition in cerebral neurones, are consistent with a potential contribution to subsequent neurodegeneration.


Brain Injuries, Traumatic , Dementia , Humans , Aged , Serum Amyloid P-Component/chemistry , Serum Amyloid P-Component/metabolism , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Blood Proteins/metabolism , Dementia/metabolism , Amyloid beta-Peptides/metabolism
6.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article En | MEDLINE | ID: mdl-38003671

The association of diabetes with cognitive dysfunction has at least 60 years of history, which started with the observation that children with type 1 diabetes mellitus (T1D), who had recurrent episodes of hypoglycemia and consequently low glucose supply to the brain, showed a deficit of cognitive capacity. Later, the growing incidence of type 2 diabetes mellitus (T2D) and dementia in aged populations revealed their high association, in which a reduced neuronal glucose supply has also been considered as a key mechanism, despite hyperglycemia. Here, we discuss the role of glucose in neuronal functioning/preservation, and how peripheral blood glucose accesses the neuronal intracellular compartment, including the exquisite glucose flux across the blood-brain barrier (BBB) and the complex network of glucose transporters, in dementia-related areas such as the hippocampus. In addition, insulin resistance-induced abnormalities in the hippocampus of obese/T2D patients, such as inflammatory stress, oxidative stress, and mitochondrial stress, increased generation of advanced glycated end products and BBB dysfunction, as well as their association with dementia/Alzheimer's disease, are addressed. Finally, we discuss how these abnormalities are accompained by the reduction in the expression and translocation of the high capacity insulin-sensitive glucose transporter GLUT4 in hippocampal neurons, which leads to neurocytoglycopenia and eventually to cognitive dysfunction. This knowledge should further encourage investigations into the beneficial effects of promising therapeutic approaches which could improve central insulin sensitivity and GLUT4 expression, to fight diabetes-related cognitive dysfunctions.


Dementia , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Child , Humans , Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Neurophysiology , Glucose/metabolism , Insulin Resistance/physiology , Hippocampus/metabolism , Hyperinsulinism/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Dementia/metabolism , Insulin/metabolism
7.
J Neuroimaging ; 33(6): 953-959, 2023.
Article En | MEDLINE | ID: mdl-37726927

BACKGROUND AND PURPOSE: The microtubule-associated protein tau (MAPT) H1 homozygosity (H1/H1 haplotype) is a genetic risk factor for neurodegenerative diseases, such as Parkinson's disease (PD). MAPT H1 homozygosity has been associated with conversion to PD; however, results are conflicting since some studies did not find a strong influence. Cortical hypometabolism is associated with cognitive impairment in PD. In this study, we aimed to evaluate the metabolic pattern in nondemented PD patients MAPT H1/H1 carriers in comparison with MAPT H1/H2 haplotype. In addition, we evaluated domain-specific cognitive differences according to MAPT haplotype. METHODS: We compared a group of 26 H1/H1 and 20 H1/H2 carriers with late-onset PD. Participants underwent a comprehensive neuropsychological cognitive evaluation and a [18F]-Fluorodeoxyglucose PET-MR scan. RESULTS: MAPT H1/H1 carriers showed worse performance in the digit span forward test of attention compared to MAPT H1/H2 carriers. In the [18F]-Fluorodeoxyglucose PET comparisons, MAPT H1/H1 displayed hypometabolism in the frontal cortex, parahippocampal, and cingulate gyrus, as well as in the caudate and globus pallidus. CONCLUSION: PD patients MAPT H1/H1 carriers without dementia exhibit relative hypometabolism in several cortical areas as well as in the basal ganglia, and worse performance in attention than MAPT H1/H2 carriers. Longitudinal studies should assess if lower scores in attention and dysfunction in these areas are predictors of dementia in MAPT H1/H1 homozygotes.


Dementia , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Parkinson Disease/metabolism , Genetic Predisposition to Disease , Brain/diagnostic imaging , Brain/metabolism , Haplotypes , Dementia/genetics , Dementia/metabolism
8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article En | MEDLINE | ID: mdl-37445910

In assessing and managing pain, when obtaining a self-report is impossible, therapeutic decision-making becomes more challenging. This study aimed to investigate whether monocytes and some membrane monocyte proteins, identified as a cluster of differentiation (CD), could be potential non-invasive peripheral biomarkers in identifying and characterizing pain in patients with severe dementia. We used 53 blood samples from non-oncological palliative patients, 44 patients with pain (38 of whom had dementia) and 0 without pain or dementia (controls). We evaluated the levels of monocytes and their subtypes, including classic, intermediate, and non-classic, and characterized the levels of specific phenotypic markers, namely CD11c, CD86, CD163, and CD206. We found that the relative concentrations of monocytes, particularly the percentage of classic monocytes, may be a helpful pain biomarker. Furthermore, the CD11c expression levels were significantly higher in patients with mixed pain, while CD163 and CD206 expression levels were significantly higher in patients with nociceptive pain. These findings suggest that the levels of monocytes, particularly the classic subtype, and their phenotype markers CD11c, CD163, and CD206 could serve as pain biomarkers in patients with severe dementia.


Dementia , Monocytes , Humans , Monocytes/metabolism , Pilot Projects , Antigens, Differentiation, Myelomonocytic/metabolism , Biomarkers/metabolism , Membrane Proteins/metabolism , Pain/metabolism , Dementia/complications , Dementia/metabolism
9.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article En | MEDLINE | ID: mdl-37373216

Diabetes mellitus is one of the most common metabolic diseases worldwide, and its long-term complications include neuropathy, referring both to the peripheral and to the central nervous system. Detrimental effects of dysglycemia, especially hyperglycemia, on the structure and function of the blood-brain barrier (BBB), seem to be a significant backgrounds of diabetic neuropathy pertaining to the central nervous system (CNS). Effects of hyperglycemia, including excessive glucose influx to insulin-independent cells, may induce oxidative stress and secondary innate immunity dependent inflammatory response, which can damage cells within the CNS, thus promoting neurodegeneration and dementia. Advanced glycation end products (AGE) may exert similar, pro-inflammatory effects through activating receptors for advanced glycation end products (RAGE), as well as some pattern-recognition receptors (PRR). Moreover, long-term hyperglycemia can promote brain insulin resistance, which may in turn promote Aß aggregate accumulation and tau hyperphosphorylation. This review is focused on a detailed analysis of the effects mentioned above towards the CNS, with special regard to mechanisms taking part in the pathogenesis of central long-term complications of diabetes mellitus initiated by the loss of BBB integrity.


Dementia , Diabetes Mellitus , Diabetic Neuropathies , Hyperglycemia , Humans , Blood-Brain Barrier/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Diabetic Neuropathies/metabolism , Glycation End Products, Advanced/metabolism , Dementia/etiology , Dementia/metabolism , Diabetes Mellitus/metabolism
10.
Brain Pathol ; 33(6): e13164, 2023 11.
Article En | MEDLINE | ID: mdl-37158450

Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aß), association with and capacity to "manufacture" Aß-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.


Dementia , Neurodegenerative Diseases , Humans , Rats , Animals , C-Reactive Protein/chemistry , C-Reactive Protein/metabolism , Neurodegenerative Diseases/metabolism , Endothelial Cells/pathology , Biomarkers/metabolism , Dementia/metabolism , Inflammation/pathology
11.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article En | MEDLINE | ID: mdl-37047057

Cerebrospinal fluid (CSF) plays an important role in the homeostasis of the brain. We previously reported that CSF major glycoproteins are biosynthesized in the brain, i.e., lipocalin-type prostaglandin D2 synthase (L-PGDS) and transferrin isoforms carrying unique glycans. Although these glycoproteins are secreted from distinct cell types, their CSF levels have been found to be highly correlated with each other in cases of neurodegenerative disorders. The aim of this study was to examine these marker levels and their correlations in other neurological diseases, such as depression and schizophrenia, and disorders featuring abnormal CSF metabolism, including spontaneous intracranial hypotension (SIH) and idiopathic normal pressure hydrocephalus (iNPH). Brain-derived marker levels were found to be highly correlated with each other in the CSF of depression and schizophrenia patients. SIH is caused by CSF leakage, which is suspected to induce hypovolemia and a compensatory increase in CSF production. In SIH, the brain-derived markers were 2-3-fold higher than in other diseases, and, regardless of their diverse levels, they were found to be correlated with each other. Another abnormality of the CSF metabolism, iNPH, is possibly caused by the reduced absorption of CSF, which secondarily induces CSF accumulation in the ventricle; the excess CSF compresses the brain's parenchyma to induce dementia. One potential treatment is a "shunt operation" to bypass excess CSF from the ventricles to the peritoneal cavity, leading to the attenuation of dementia. After the shunt operation, marker levels began to increase within a week and then further increased by 2-2.5-fold at three, six, and twelve months post-operation, at which point symptoms had gradually attenuated. Notably, the marker levels were found to be correlated with each other in the post-operative period. In conclusion, the brain-derived major glycoprotein markers were highly correlated in the CSF of patients with different neurological diseases, and their correlations were maintained even after surgical intervention. These results suggest that brain-derived proteins could be biomarkers of CSF production.


Dementia , Hydrocephalus , Nervous System Diseases , Humans , Brain/metabolism , Nervous System Diseases/metabolism , Glycoproteins/metabolism , Hydrocephalus/metabolism , Dementia/metabolism , Biomarkers/metabolism
12.
Proc Natl Acad Sci U S A ; 120(13): e2220984120, 2023 03 28.
Article En | MEDLINE | ID: mdl-36952379

The amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC) of Guam is an endemic neurodegenerative disease that features widespread tau tangles, occasional α-synuclein Lewy bodies, and sparse ß-amyloid (Aß) plaques distributed in the central nervous system. Extensive studies of genetic or environmental factors have failed to identify a cause of ALS-PDC. Building on prior work describing the detection of tau and Aß prions in Alzheimer's disease (AD) and Down syndrome brains, we investigated ALS-PDC brain samples for the presence of prions. We obtained postmortem frozen brain tissue from 26 donors from Guam with ALS-PDC or no neurological impairment and 71 non-Guamanian donors with AD or no neurological impairment. We employed cellular bioassays to detect the prion conformers of tau, α-synuclein, and Aß proteins in brain extracts. In ALS-PDC brain samples, we detected high titers of tau and Aß prions, but we did not detect α-synuclein prions in either cohort. The specific activity of tau and Aß prions was increased in Guam ALS-PDC compared with sporadic AD. Applying partial least squares regression to all biochemical and prion infectivity measurements, we demonstrated that the ALS-PDC cohort has a unique molecular signature distinguishable from AD. Our findings argue that Guam ALS-PDC is a distinct double-prion disorder featuring both tau and Aß prions.


Alzheimer Disease , Amyotrophic Lateral Sclerosis , Dementia , Neurodegenerative Diseases , Parkinsonian Disorders , Prion Diseases , Prions , Humans , alpha-Synuclein , Amyotrophic Lateral Sclerosis/metabolism , Dementia/metabolism , Parkinsonian Disorders/metabolism , tau Proteins/metabolism
13.
Mov Disord ; 38(4): 682-688, 2023 04.
Article En | MEDLINE | ID: mdl-36808643

BACKGROUND: The alteration of leucine-rich repeat kinase 2 (LRRK2) kinase activity is thought to be involved in Parkinson's disease (PD) pathogenesis beyond familiar cases, and LRRK2 inhibitors are currently under investigation. Preliminary data suggest a relationship between LRRK2 alteration and cognitive impairment in PD. OBJECTIVE: To investigate cerebrospinal fluid (CSF) LRRK2 levels in PD and other parkinsonian disorders, also correlating them with cognitive impairment. METHODS: In this study, we retrospectively investigated by means of a novel highly sensitive immunoassay the levels of total and phosphorylated (pS1292) LRRK2 in CSF of cognitively unimpaired PD (n = 55), PD with mild cognitive impairment (n = 49), PD with dementia (n = 18), dementia with Lewy bodies (n = 12), atypical parkinsonian syndromes (n = 35), and neurological controls (n = 30). RESULTS: Total and pS1292 LRRK2 levels were significantly higher in PD with dementia with respect to PD with mild cognitive impairment and PD, and also showed a correlation with cognitive performances. CONCLUSIONS: The tested immunoassay may represent a reliable method for assessing CSF LRRK2 levels. The results appear to confirm an association of LRRK2 alteration with cognitive impairment in PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Dementia , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Parkinsonian Disorders , Humans , Dementia/etiology , Dementia/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation , Parkinson Disease/complications , Parkinson Disease/cerebrospinal fluid , Parkinsonian Disorders/cerebrospinal fluid , Parkinsonian Disorders/complications , Retrospective Studies
14.
Nat Immunol ; 24(3): 545-557, 2023 03.
Article En | MEDLINE | ID: mdl-36658241

The TREM2-DAP12 receptor complex sustains microglia functions. Heterozygous hypofunctional TREM2 variants impair microglia, accelerating late-onset Alzheimer's disease. Homozygous inactivating variants of TREM2 or TYROBP-encoding DAP12 cause Nasu-Hakola disease (NHD), an early-onset dementia characterized by cerebral atrophy, myelin loss and gliosis. Mechanisms underpinning NHD are unknown. Here, single-nucleus RNA-sequencing analysis of brain specimens from DAP12-deficient NHD individuals revealed a unique microglia signature indicating heightened RUNX1, STAT3 and transforming growth factor-ß signaling pathways that mediate repair responses to injuries. This profile correlated with a wound healing signature in astrocytes and impaired myelination in oligodendrocytes, while pericyte profiles indicated vascular abnormalities. Conversely, single-nuclei signatures in mice lacking DAP12 signaling reflected very mild microglial defects that did not recapitulate NHD. We envision that DAP12 signaling in microglia attenuates wound healing pathways that, if left unchecked, interfere with microglial physiological functions, causing pathology in human. The identification of a dysregulated NHD microglia signature sparks potential therapeutic strategies aimed at resetting microglia signaling pathways.


Dementia , Subacute Sclerosing Panencephalitis , Animals , Humans , Mice , Brain/metabolism , Dementia/metabolism , Dementia/pathology , Membrane Glycoproteins/metabolism , Microglia/metabolism , Receptors, Immunologic/metabolism , Subacute Sclerosing Panencephalitis/metabolism , Subacute Sclerosing Panencephalitis/pathology
15.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article En | MEDLINE | ID: mdl-36674698

For a long time, Substance Use Disorders (SUDs) were not considered a component in the etiology of dementia. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders introduced substance-induced neurocognitive disorders, incorporating this notion to clinical practice. However, detection and monitoring of neurodegenerative processes in SUD patients remain a major clinical challenge, especially when early diagnosis is required. In the present study, we aimed to investigate new potential biomarkers of neurodegeneration that could predict cognitive impairment in SUD patients: the circulating concentrations of Neurofilament Light chain protein (NfL) and Brain-Derived Neurotrophic Factor (BDNF). Sixty SUD patients were compared with twenty-seven dementia patients and forty healthy controls. SUD patients were recruited and assessed using the Psychiatric Research Interview for Substance and Mental (PRISM) and a battery of neuropsychological tests, including the Montreal Cognitive Assessment test for evaluation of cognitive impairment. When compared to healthy control subjects, SUD patients showed increases in plasma NfL concentrations and NfL/BDNF ratio, as well as reduced plasma BDNF levels. These changes were remarkable in SUD patients with moderate-severe cognitive impairment, being comparable to those observed in dementia patients. NfL concentrations correlated with executive function and memory cognition in SUD patients. The parameters "age", "NfL/BDNF ratio", "first time alcohol use", "age of onset of alcohol use disorder", and "length of alcohol use disorder diagnosis" were able to stratify our SUD sample into patients with cognitive impairment from those without cognitive dysfunction with great specificity and sensibility. In conclusion, we propose the combined use of NfL and BDNF (NfL/BDNF ratio) to monitor substance-induced neurocognitive disorder.


Alcoholism , Alzheimer Disease , Cognitive Dysfunction , Dementia , Humans , Brain-Derived Neurotrophic Factor/metabolism , Alcoholism/complications , Alcoholism/diagnosis , Alcoholism/metabolism , Intermediate Filaments/metabolism , Neurofilament Proteins , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Dementia/metabolism , Biomarkers/metabolism , Alzheimer Disease/metabolism
16.
Endokrynol Pol ; 73(6): 917-921, 2022.
Article En | MEDLINE | ID: mdl-36519649

INTRODUCTION: In older people, depression and mental disability are more frequently present than in younger subjects. It is found that depressionis a risk factor for dementia, just as dementia is a risk factor for depression. In turn, both disturbances are known to be influenced by hormones. The present study aimed to see whether the hormonal changes in subjects over 75 years old correlate with the symptoms of depression measured using the Geriatric Depression Scale (GDS). MATERIAL AND METHODS: In a group of patients aged over 75 years, concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), oestradiol, testosterone, dehydroepiandrosterone sulphate (DHEAs), and cortisol were measured in serum with the use of chemiluminescence. The symptoms of depression were estimated by GDS, and the mental functions were assessed by the Mini-Mental State Examination (MMSE). The correlations between the obtained results were estimated by Spearman's test. RESULTS AND CONCLUSIONS: A significant correlation between GDS and MMSE scores was observed in the investigated patients. Some statistically significant correlations concerning cortisol and testosterone with GDS were observed in women, but not in men. On the other hand, no significant correlations between concentrations of FSH, LH, DHEAs, and oestradiol with GDS were noticed. Our data support the role of cortisol (possibly secreted during chronic stress) in the risk of depression. The gender difference in the mechanism of depression and stress in older age could be also hypothesized.


Depression , Aged , Female , Humans , Male , Dementia/etiology , Dementia/metabolism , Depression/etiology , Depression/metabolism , Estradiol , Follicle Stimulating Hormone , Hydrocortisone , Luteinizing Hormone , Testosterone
17.
Mol Psychiatry ; 27(11): 4385-4393, 2022 Nov.
Article En | MEDLINE | ID: mdl-36056171

Persistent pain has been recently suggested as a risk factor for dementia. Indeed, chronic pain is frequently accompanied by maladaptive brain plasticity and cognitive deficits whose molecular underpinnings are poorly understood. Despite the emerging role of Tau as a key regulator of neuronal plasticity and pathology in diverse brain disorders, the role of Tau has never been studied in the context of chronic pain. Using a peripheral (sciatic) neuropathy to model chronic pain in mice-spared nerve injury (SNI) for 4 months-in wildtype as well as P301L-Tau transgenic mice, we hereby demonstrate that SNI triggers AD-related neuropathology characterized by Tau hyperphosphorylation, accumulation, and aggregation in hippocampus followed by neuronal atrophy and memory deficits. Molecular analysis suggests that SNI inhibits autophagy and reduces levels of the Rab35, a regulator of Tau degradation while overexpression of Rab35 or treatment with the analgesic drug gabapentin reverted the above molecular changes leading to neurostructural and memory recovery. Interestingly, genetic ablation of Tau blocks the establishment of SNI-induced hippocampal morphofunctional deficits supporting the mediating role of Tau in SNI-evoked hippocampal pathology and memory impairment. These findings reveal that exposure to chronic pain triggers Tau-related neuropathology and may be relevant for understanding how chronic pain precipitates memory loss leading to dementia.


Alzheimer Disease , Chronic Pain , Dementia , Mice , Animals , Chronic Pain/metabolism , Memory Disorders/metabolism , Hippocampus/metabolism , Neuronal Plasticity/physiology , Mice, Transgenic , Dementia/metabolism , tau Proteins/metabolism , Disease Models, Animal , Alzheimer Disease/metabolism
18.
PET Clin ; 17(3): 479-494, 2022 Jul.
Article En | MEDLINE | ID: mdl-35717103

Positron emission tomography (PET) has been a key component in the diagnostic armamentarium for assessing neurodegenerative diseases such as Alzheimer or Parkinson disease. PET imaging has been useful for diagnosing these disorders, identifying their pathophysiology, and following their treatment. Further, PET imaging has been extensively used for both clinical and research purposes, particularly for helping with potential therapeutic approaches for managing neurodegenerative diseases. This article will review the current literature regarding PET imaging in patients with neurodegenerative disorders. This includes an evaluation of the most commonly used tracer fluorodeoxyglucose that measures cerebral glucose metabolism, tracers that assess neurotransmitter systems, and tracers designed to reveal disease-specific pathophysiological processes. With the continuing development of an expanding variety of radiopharmaceuticals, PET imaging will likely play a prominent role in future research and clinical applications for neurodegenerative diseases.


Cognitive Dysfunction , Dementia , Neurodegenerative Diseases , Cognitive Dysfunction/diagnostic imaging , Dementia/diagnostic imaging , Dementia/metabolism , Fluorodeoxyglucose F18 , Humans , Neurodegenerative Diseases/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals
19.
Vascul Pharmacol ; 145: 106997, 2022 08.
Article En | MEDLINE | ID: mdl-35526818

The mechanism whereby an increase in neuronal activity (NA) leads to a local elevation in cerebral blood flow to supply the active neurons with oxygen and nutrients and remove the catabolic waste has been termed neurovascular coupling (NVC). Although it has long been thought that the vasoactive mediators involved in NVC are generated by neurons and astrocytes, recent evidence unveiled the crucial role of cerebrovascular endothelial cells in NVC. Brain capillary endothelial cells express a complement of ion channels, including inward-rectifier K+ (Kir2.1) channels, Transient Receptor Potential Ankyrin 1 channels and N-methyl-d-aspartate receptors that enable them to sense NA and thereby initiate the retrograde transmission of both electrical (via endothelium-dependent hyperpolarization) and chemical (via intercellular Ca2+ waves also sustained by TRP Vanilloid 4 channels and inositol-1,4,5-trisphosphate receptors) signals that induce vasodilation in upstream pial arteries and parenchymal arteries. Notably, a defect in the endothelial ion channel machinery (particularly, Kir2.1 channels) contributes to vascular cognitive impairment and dementia that features many cerebral disorders, including Alzheimer's disease, cerebral small vessel diseases, and traumatic brain injury. Targeting endothelial ion channels through appropriate pharmacological approaches might represent a hitherto unappreciated strategy to rescue CBF and prevent cognitive impairment and dementia in patients affected by cerebral disorders.


Dementia , Endothelial Cells , Ankyrins/metabolism , Cerebrovascular Circulation , Dementia/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Inositol/metabolism , Oxygen/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Vasodilation/physiology
20.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article En | MEDLINE | ID: mdl-35115402

The α-synuclein protein can adopt several different conformations that cause neurodegeneration. Different α-synuclein conformers cause at least three distinct α-synucleinopathies: multiple system atrophy (MSA), dementia with Lewy bodies (DLB), and Parkinson's disease (PD). In earlier studies, we transmitted MSA to transgenic (Tg) mice and cultured HEK cells both expressing mutant α-synuclein (A53T) but not to cells expressing α-synuclein (E46K). Now, we report that DLB is caused by a strain of α-synuclein prions that is distinct from MSA. Using cultured HEK cells expressing mutant α-synuclein (E46K), we found that DLB prions could be transmitted to these HEK cells. Our results argue that a third strain of α-synuclein prions likely causes PD, but further studies are needed to identify cells and/or Tg mice that express a mutant α-synuclein protein that is permissive for PD prion replication. Our findings suggest that other α-synuclein mutants should give further insights into α-synuclein prion replication, strain formation, and disease pathogenesis, all of which are likely required to discover effective drugs for the treatment of PD as well as the other α-synucleinopathies.


Dementia/metabolism , Lewy Body Disease/metabolism , Multiple System Atrophy/metabolism , Prions/metabolism , alpha-Synuclein/metabolism , Aged , Cell Line , Female , Humans , Male , Middle Aged , Parkinson Disease/metabolism , Synucleinopathies/metabolism
...